您的位置:首页 > 财经 > 产业 > 手机网页wap_ae模板下载_b站2023年免费入口_营销方式有哪些

手机网页wap_ae模板下载_b站2023年免费入口_营销方式有哪些

2024/12/21 19:53:57 来源:https://blog.csdn.net/qq_53536373/article/details/142894676  浏览:    关键词:手机网页wap_ae模板下载_b站2023年免费入口_营销方式有哪些
手机网页wap_ae模板下载_b站2023年免费入口_营销方式有哪些

代码地址

https://github.com/LeapLabTHU/ACmix

 https://gitee.com/mindspore/models

论文创新点,将注意力机制 和卷积 相结合

# encoding: utf-8
'''
@author: duhanyue
@start time: 2024/10/13 10:04
'''import torch
import torch.nn as nn
def position(H, W, is_cuda=True):if is_cuda:loc_w = torch.linspace(-1.0, 1.0, W).cuda().unsqueeze(0).repeat(H, 1)loc_h = torch.linspace(-1.0, 1.0, H).cuda().unsqueeze(1).repeat(1, W)else:loc_w = torch.linspace(-1.0, 1.0, W).unsqueeze(0).repeat(H, 1)loc_h = torch.linspace(-1.0, 1.0, H).unsqueeze(1).repeat(1, W)loc = torch.cat([loc_w.unsqueeze(0), loc_h.unsqueeze(0)], 0).unsqueeze(0)return locdef stride(x, stride):b, c, h, w = x.shapereturn x[:, :, ::stride, ::stride]def init_rate_half(tensor):if tensor is not None:tensor.data.fill_(0.5)def init_rate_0(tensor):if tensor is not None:tensor.data.fill_(0.)
class ACmix(nn.Module):def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):super(ACmix, self).__init__()self.in_planes = in_planesself.out_planes = out_planesself.head = headself.kernel_att = kernel_attself.kernel_conv = kernel_convself.stride = strideself.dilation = dilationself.rate1 = torch.nn.Parameter(torch.Tensor(1))self.rate2 = torch.nn.Parameter(torch.Tensor(1))self.head_dim = self.out_planes // self.headself.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)self.softmax = torch.nn.Softmax(dim=1)self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,stride=stride)self.reset_parameters()def reset_parameters(self):init_rate_half(self.rate1)init_rate_half(self.rate2)kernel = torch.zeros(self.kernel_conv * self.kernel_conv, self.kernel_conv, self.kernel_conv)for i in range(self.kernel_conv * self.kernel_conv):kernel[i, i // self.kernel_conv, i % self.kernel_conv] = 1.kernel = kernel.squeeze(0).repeat(self.out_planes, 1, 1, 1)self.dep_conv.weight = nn.Parameter(data=kernel, requires_grad=True)self.dep_conv.bias = init_rate_0(self.dep_conv.bias)def forward(self, x):q, k, v = self.conv1(x), self.conv2(x), self.conv3(x)scaling = float(self.head_dim) ** -0.5b, c, h, w = q.shapeh_out, w_out = h // self.stride, w // self.stride# ### att# ## positional encodingpe = self.conv_p(position(h, w, x.is_cuda))q_att = q.view(b * self.head, self.head_dim, h, w) * scalingk_att = k.view(b * self.head, self.head_dim, h, w)v_att = v.view(b * self.head, self.head_dim, h, w)if self.stride > 1:q_att = stride(q_att, self.stride)q_pe = stride(pe, self.stride)else:q_pe = peunfold_k = self.unfold(self.pad_att(k_att)).view(b * self.head, self.head_dim,self.kernel_att * self.kernel_att, h_out,w_out)  # b*head, head_dim, k_att^2, h_out, w_outunfold_rpe = self.unfold(self.pad_att(pe)).view(1, self.head_dim, self.kernel_att * self.kernel_att, h_out,w_out)  # 1, head_dim, k_att^2, h_out, w_outatt = (q_att.unsqueeze(2) * (unfold_k + q_pe.unsqueeze(2) - unfold_rpe)).sum(1)  # (b*head, head_dim, 1, h_out, w_out) * (b*head, head_dim, k_att^2, h_out, w_out) -> (b*head, k_att^2, h_out, w_out)att = self.softmax(att)out_att = self.unfold(self.pad_att(v_att)).view(b * self.head, self.head_dim, self.kernel_att * self.kernel_att,h_out, w_out)out_att = (att.unsqueeze(1) * out_att).sum(2).view(b, self.out_planes, h_out, w_out)## convf_all = self.fc(torch.cat([q.view(b, self.head, self.head_dim, h * w), k.view(b, self.head, self.head_dim, h * w),v.view(b, self.head, self.head_dim, h * w)], 1))f_conv = f_all.permute(0, 2, 1, 3).reshape(x.shape[0], -1, x.shape[-2], x.shape[-1])out_conv = self.dep_conv(f_conv)return self.rate1 * out_att + self.rate2 * out_conv
acmix_model = ACmix(in_planes=64,out_planes=64, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1)
x=torch.randn(16,64,64,44)
out=acmix_model(x)
x=x+out
print(out.shape)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com