您的位置:首页 > 财经 > 金融 > 浙江金华疫情最新情况_网上广告设计接单平台_seo培训一对一_杭州seo公司哪家好

浙江金华疫情最新情况_网上广告设计接单平台_seo培训一对一_杭州seo公司哪家好

2024/12/22 15:41:02 来源:https://blog.csdn.net/jndingxin/article/details/142255693  浏览:    关键词:浙江金华疫情最新情况_网上广告设计接单平台_seo培训一对一_杭州seo公司哪家好
浙江金华疫情最新情况_网上广告设计接单平台_seo培训一对一_杭州seo公司哪家好
  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将一个图像添加到累积图像中。
该函数将 src 或其部分元素添加到 dst 中:
dst ( x , y ) ← dst ( x , y ) + src ( x , y ) if mask ( x , y ) ≠ 0 \texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0 dst(x,y)dst(x,y)+src(x,y)ifmask(x,y)=0
该函数支持多通道图像。每个通道独立处理。
cv::accumulate 函数可以用于收集由静止相机拍摄的场景背景的统计数据,并用于进一步的前景-背景分割。

函数原型


void cv::accumulate	
(InputArray 	src,InputOutputArray 	dst,InputArray 	mask = noArray() 
)	

参数

  • 参数src 输入图像,类型为 CV_8UC(n),CV_16UC(n),CV_32FC(n) 或 CV_64FC(n),其中 n 是一个正整数。

  • 参数dst 累积图像,与输入图像具有相同数量的通道,并且深度为 CV_32F 或 CV_64F。

  • 参数mask 可选的操作掩码。

代码示例

#include <iostream>
#include <opencv2/opencv.hpp>int main()
{// 加载一个真实的图像cv::Mat sourceImage = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/sun2.jpg", cv::IMREAD_COLOR );if ( sourceImage.empty() ){std::cout << "Error loading image" << std::endl;return -1;}// 获取源图像的尺寸和通道数cv::Size imageSize = sourceImage.size();int numChannels = sourceImage.channels();// 输出源图像的尺寸和类型std::cout << "Source Image Size: " << imageSize << std::endl;std::cout << "Source Image Type: " << sourceImage.type() << std::endl;std::cout << "Source Image Channels: " << numChannels << std::endl;// 创建一个空的累积图像cv::Mat cumulativeImage = cv::Mat::zeros(imageSize, CV_32FC(numChannels)); // 累积图像类型为 CV_32FC3// 输出累积图像的尺寸和类型std::cout << "Cumulative Image Size: " << cumulativeImage.size() << std::endl;std::cout << "Cumulative Image Type: " << cumulativeImage.type() << std::endl;std::cout << "Cumulative Image Channels: " << cumulativeImage.channels() << std::endl;// 将源图像转换为浮点类型cv::Mat sourceImageFloat;sourceImage.convertTo(sourceImageFloat, CV_32FC(numChannels), 1.0 / 255.0);// 输出转换后的图像尺寸和类型std::cout << "Converted Image Size: " << sourceImageFloat.size() << std::endl;std::cout << "Converted Image Type: " << sourceImageFloat.type() << std::endl;std::cout << "Converted Image Channels: " << sourceImageFloat.channels() << std::endl;// 创建一个掩码图像cv::Mat mask = cv::Mat::ones(imageSize, CV_8U) * 255; // 全部像素为255,即不使用掩码// 输出掩码图像的尺寸和类型std::cout << "Mask Image Size: " << mask.size() << std::endl;std::cout << "Mask Image Type: " << mask.type() << std::endl;// 确保累积图像和源图像的尺寸一致if (cumulativeImage.rows != sourceImageFloat.rows || cumulativeImage.cols != sourceImageFloat.cols) {std::cout << "Error: Cumulative image and source image do not have the same size." << std::endl;return -1;}// 确保累积图像和源图像的通道数一致if (cumulativeImage.channels() != sourceImageFloat.channels()) {std::cout << "Error: Cumulative image and source image do not have the same number of channels." << std::endl;return -1;}// 累积源图像到累积图像中int numAccumulations = 100; // 增加累加次数for (int i = 0; i < numAccumulations; ++i) {cv::accumulate(sourceImageFloat, cumulativeImage, mask);}// 显示累积图像cv::Mat normalizedCumulativeImage;cv::normalize(cumulativeImage, normalizedCumulativeImage, 0, 255, cv::NORM_MINMAX, CV_8U);// 使用高对比度的色彩映射cv::Mat enhancedCumulativeImage;cv::applyColorMap(normalizedCumulativeImage, enhancedCumulativeImage, cv::COLORMAP_JET);cv::imshow("Original Image", sourceImage);cv::imshow("Cumulative Image", enhancedCumulativeImage);cv::waitKey( 0 );return 0;
}

运行结果

在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com