您的位置:首页 > 财经 > 金融 > 分类预测 | Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断

分类预测 | Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断

2025/2/24 11:05:19 来源:https://blog.csdn.net/kjm13182345320/article/details/140586228  浏览:    关键词:分类预测 | Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断

分类预测 | Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断

目录

    • 分类预测 | Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断;

1.Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断,运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。

3.算法优化LSSVM参数为:sig,gamma。

4.excel数据集,main为主程序,其他为函数文件,无需运行。

注:程序和数据放在一个文件夹。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现BES-LSSVM秃鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;
%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   %% 优化算法
[Best_score,Best_pos, curve] = OOA(pop, Max_iteration, lb, ub, dim, fun); 
c = Best_pos(1);  
g = Best_pos(2);%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); %% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 优化曲线
figure
plot(curve, 'linewidth',1.5);%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com