您的位置:首页 > 财经 > 金融 > 韩国踩踏自拍视频_免费制作企业微商城_搜索引擎有哪些_企业宣传软文

韩国踩踏自拍视频_免费制作企业微商城_搜索引擎有哪些_企业宣传软文

2025/1/16 21:43:35 来源:https://blog.csdn.net/iracole/article/details/145114509  浏览:    关键词:韩国踩踏自拍视频_免费制作企业微商城_搜索引擎有哪些_企业宣传软文
韩国踩踏自拍视频_免费制作企业微商城_搜索引擎有哪些_企业宣传软文
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

📌你需要解决的疑问:这个代码是否有错?对错与否都请给出你的思考
📌打卡要求:请查找相关资料、逐步推理模型、详细写下你的思考过程

代码如下

# 定义残差单元  
def block(x, filters, strides=1, groups=32, conv_shortcut=True):  if conv_shortcut:  shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x)  # epsilon为BN公式中防止分母为零的值  shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut)  else:  # identity_shortcut  shortcut = x  # 三层卷积层  x = Conv2D(filters=filters, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)  x = BatchNormalization(epsilon=1.001e-5)(x)  x = ReLU()(x)  # 计算每组的通道数  g_channels = int(filters / groups)  # 进行分组卷积  x = grouped_convolution_block(x, strides, groups, g_channels)  x = Conv2D(filters=filters * 2, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)  x = BatchNormalization(epsilon=1.001e-5)(x)  x = Add()([x, shortcut])  x = ReLU()(x)  return x

如果conv_shortcut=False,那么执行“x=Add()…”语句时,通道数不一致的,为什么不会报错呢?

思考

关键点分析:

  1. conv_shortcut=False 时的 shortcut

    • conv_shortcut=False 时,shortcut 直接等于 x,没有经过卷积层处理。也就是说,在 x = Add()([x, shortcut]) 这一行之前,shortcutx 是相同的张量。因此,它们的通道数和空间尺寸应该是相同的,直接相加是没有问题的。
    • 因此,执行 Add() 时,xshortcut 的维度是匹配的。
  2. conv_shortcut=True 时的 shortcut

    • conv_shortcut=True 时,shortcut 会通过一个 1x1 卷积进行通道数调整:
      shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x)
      
      • 这里 shortcut 的通道数被修改为 filters * 2,使其与主路径输出的通道数一致。
      • 如果步长 strides 是大于1的值(例如2),则 shortcut 的空间尺寸(高度和宽度)也会发生变化,因此需要保证它们的空间尺寸与主路径的输出相匹配。为此,使用 Conv2DBatchNormalization 来调整通道数,并保持 padding='same' 来避免空间尺寸的变化。
  3. Add() 层的作用

    • Add() 层要求输入张量的维度一致。如果 conv_shortcut=Falseshortcutx 在通道数和空间尺寸上已经是相同的,因此直接相加是不会出现维度不匹配的错误的。
    • 但是,如果通道数或空间尺寸不一致,Keras 会抛出错误,提示“维度不匹配”或类似错误。

为什么没有报错:

  • conv_shortcut=False 时,shortcutx 的维度是一样的,因为 shortcut = x,它们在通道数、空间尺寸等维度上都相同,因此 Add() 操作没有问题。
  • Add() 操作本身不会对维度进行任何变换,它只是简单地将两个张量逐元素相加。如果两个张量的维度不一致,Keras 会报错。

结论:

  • conv_shortcut=False 的情况下,shortcut 直接等于 x,因此它们的维度是相同的,Add() 操作能够成功执行。
  • 只有当 conv_shortcut=True 时,shortcut 会通过卷积进行维度调整,这样就确保了通道数和空间尺寸与主路径的输出一致,避免了维度不匹配的问题。

测试:

为了验证,可以在代码中添加调试语句,打印出 x.shapeshortcut.shape,看看它们在执行 Add() 之前是否匹配。例如:

print("x shape:", x.shape)
print("shortcut shape:", shortcut.shape)

这可以帮助进一步确认 xshortcut 在执行加法之前是否一致。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com