您的位置:首页 > 财经 > 产业 > 平面设计招聘唐山_网页制作培训学费_推广引流app_seo计费系统源码

平面设计招聘唐山_网页制作培训学费_推广引流app_seo计费系统源码

2024/12/23 19:18:16 来源:https://blog.csdn.net/NiNg_1_234/article/details/144579428  浏览:    关键词:平面设计招聘唐山_网页制作培训学费_推广引流app_seo计费系统源码
平面设计招聘唐山_网页制作培训学费_推广引流app_seo计费系统源码

文章目录

  • 基于Hadoop的数据清洗
    • 一、引言
    • 二、数据清洗步骤
      • 1、数据预处理
      • 2、编写MapReduce程序
        • 2.1、Mapper类
        • 2.2、Reducer类
      • 3、配置和运行Job
    • 三、使用示例
    • 四、总结

基于Hadoop的数据清洗

在这里插入图片描述

一、引言

在大数据处理中,数据清洗是一个至关重要的步骤,它涉及到去除或修正数据集中的不准确、不完整、冗余或格式错误的信息。Hadoop作为一个强大的分布式计算平台,提供了MapReduce编程模型来实现数据清洗。本文将介绍如何基于Hadoop进行数据清洗,包括步骤和代码示例。

二、数据清洗步骤

在这里插入图片描述

1、数据预处理

在进行数据清洗之前,首先需要将待清洗的数据上传到Hadoop分布式文件系统(HDFS)中。这一步是数据清洗的前提,确保数据已经准备好进行处理。

2、编写MapReduce程序

数据清洗通常通过编写MapReduce程序来实现。Map函数负责读取输入数据,并根据清洗规则进行处理,Reduce函数则负责合并和整理清洗后的数据。

2.1、Mapper类

Mapper类是数据清洗的核心,它负责处理每一行输入数据。以下是一个简单的Mapper类的代码示例,用于去除年龄小于0和重复的用户记录:

package dataClean;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;public class DataCleanMap extends Mapper<LongWritable, Text, Text, Text> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String valStr = value.toString();String[] fields = valStr.split(",");// 假设CSV文件包含用户ID、姓名和年龄if (fields.length == 3 && Integer.parseInt(fields[2]) >= 0) {context.write(new Text(fields[0]), new Text(fields[1] + "," + fields[2]));}}
}
2.2、Reducer类

Reducer类在这里不是必需的,因为我们只进行数据过滤,不进行数据聚合。但为了完整性,以下是一个简单的Reducer类的代码示例:

package dataClean;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;public class DataCleanReduce extends Reducer<Text, Text, Text, Text> {@Overrideprotected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {for (Text value : values) {context.write(key, value);}}
}

3、配置和运行Job

配置MapReduce Job,指定输入输出路径以及其他必要的设置,并启动Job。

package dataClean;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class DataCleanJob {public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf, "Data Clean Job");job.setJarByClass(DataCleanJob.class);job.setMapperClass(DataCleanMap.class);job.setReducerClass(DataCleanReduce.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

三、使用示例

假设我们有一个包含用户信息的CSV文件,路径为/user/input/users.csv,我们希望将清洗后的数据输出到/user/output/cleaned-users。我们可以按照以下方式运行Job:

hadoop jar DataCleanJob.jar dataClean.DataCleanJob /user/input/users.csv /user/output/cleaned-users

四、总结

基于Hadoop的数据清洗是一个涉及数据预处理、MapReduce程序编写、配置和运行Job的过程。通过这个过程,我们可以有效地去除或修正数据集中的错误和不一致性,为后续的数据分析和处理提供干净、准确的数据。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • Hadoop清洗数据_mob649e815b8ae8的技术博客_51CTO博客
  • Hadoop3.0大数据处理学习4(案例:数据清洗、数据指标统计、任务脚本封装、Sqoop导出Mysql)_hadoop可以做数据清洗吗-CSDN博客

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com