在深度学习中,长短期记忆网络(LSTM, Long Short-Term Memory)是一种强大的循环神经网络(RNN)变体,专门为解决序列数据中的长距离依赖问题而设计。LSTM因其强大的记忆能力,广泛应用于自然语言处理、时间序列分析和语音识别等任务中。本文将详细介绍LSTM的原理、结构以及其在多分类预测中的实现。
一、LSTM
LSTM由Hochreiter和Schmidhuber在1997年提出,是一种能够有效避免传统RNN梯度消失或梯度爆炸问题的网络架构。与传统RNN不同,LSTM通过引入记忆单元(Cell State)和门控机制(Gate Mechanism),实现了对长时间序列依赖信息的捕获和控制。
二、LSTM的核心结构与工作原理
LSTM的核心在于其结构中包含的三个门:
输入门(Input Gate):控制新信息对记忆单元的更新程度。
遗忘门(Forget Gate):决定需要忘记的历史信息。
输出门(Output Gate):决定当前时间步需要输出的信息。
1. 记忆单元(Cell State)
记忆单元是LSTM中存储信息的核心组件,其状态可以通过门控机制进行动态更新。
2. 遗忘门
遗忘门控制需要从记忆单元中移除的信息
3. 输入门
输入门决定新信息加入记忆单元的程度
4. 输出门
输出门决定隐藏状态的更新
三、LSTM的优势
解决梯度问题:通过门控机制有效缓解梯度消失或爆炸问题。
强大的记忆能力:能够记住序列中的长距离依赖信息。
广泛适用性:在时间序列预测、文本分类、语音处理等任务中表现卓越。
四、LSTM部分代码与参数设置
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
rng('default');%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
% res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
L = size(res, 2) - outdim; % 输入特征维度
P_train = res(1: num_train_s, 1: L)';
T_train = res(1: num_train_s, L + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: L)';
T_test = res(num_train_s + 1: end, L + 1: end)';
N = size(P_test, 2);%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MiniBatchSize', 128, ... % 批大小'MaxEpochs', 1000, ... % 最大迭代次数'InitialLearnRate', 1e-2, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率下降'LearnRateDropFactor', 0.1, ... % 学习率下降因子'LearnRateDropPeriod', 700, ... % 经过700次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ... % 每次训练打乱数据集'ValidationPatience', Inf, ... % 关闭验证'Plots', 'training-progress', ... % 画出曲线'Verbose', false);
五、运行结果
六、代码与数据集下载
下载地址:https://mbd.pub/o/bread/Z5yclJ9p