您的位置:首页 > 财经 > 金融 > 企业咨询管理公司排名_成都专业网站制作建设_网上营销的方式_路由优化大师

企业咨询管理公司排名_成都专业网站制作建设_网上营销的方式_路由优化大师

2025/1/22 4:15:24 来源:https://blog.csdn.net/lu070828/article/details/144203374  浏览:    关键词:企业咨询管理公司排名_成都专业网站制作建设_网上营销的方式_路由优化大师
企业咨询管理公司排名_成都专业网站制作建设_网上营销的方式_路由优化大师

一、上下文

《Kafka-Connect自带示例》中我们尝试了零配置启动producer和consumer去生产和消费数据,那么它内部是如何实现的呢?下面我们从源码来揭开它神秘的面纱。

二、入口类有哪些?

从启动脚本(connect-standalone.sh)中我们可以获取到启动类为ConnectStandalone

# ......省略......exec $(dirname $0)/kafka-run-class.sh $EXTRA_ARGS org.apache.kafka.connect.cli.ConnectStandalone "$@"

此外我们在参数中还给了source和sink的配置文件,从这source文件中可以获取到入口类为:FileStreamSource,从sink文件中可以获取到入口类为:FileStreamSink

FileStreamSource对应源码中的FileStreamSourceConnector

FileStreamSink对应源码中的FileStreamSinkConnector

connect-file-source.properties

name=local-file-source
connector.class=FileStreamSource
tasks.max=1
file=/opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/etc/kafka/conf.dist/connect-file-test-data/source.txt
topic=connect-test

connect-file-sink.properties

name=local-file-sink
connector.class=FileStreamSink
tasks.max=1
file=/opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/etc/kafka/conf.dist/connect-file-test-data/sink.txt
topics=connect-test

三、ConnectStandalone

它将Kafka Connect作为独立进程运行。在此模式下,work(连接器和任务)不会被分配。相反,所有正常的Connect机器都在一个过程中工作。适合一些临时、小型或实验性工作。

在此模式下,连接器和任务配置存储在内存中,不是持久的。但是,连接器偏移数据是持久的,因为它使用文件存储(可通过offset.storage.file.filename配置)

public class ConnectStandalone extends AbstractConnectCli<StandaloneConfig> {public static void main(String[] args) {ConnectStandalone connectStandalone = new ConnectStandalone(args);//调用父类的run()connectStandalone.run();}}//这里用到了AbstractConnectCli,它里面有Kafka Connect的通用初始化逻辑。
public abstract class AbstractConnectCli<T extends WorkerConfig> {//验证第一个CLI参数、进程工作器属性,并启动Connectpublic void run() {if (args.length < 1 || Arrays.asList(args).contains("--help")) {log.info("Usage: {}", usage());Exit.exit(1);}try {//connect-standalone.properties 配置文件String workerPropsFile = args[0];//从connect-standalone.properties 中将配置的参数都转成 mapMap<String, String> workerProps = !workerPropsFile.isEmpty() ?Utils.propsToStringMap(Utils.loadProps(workerPropsFile)) : Collections.emptyMap();//这里面存放了 connect-standalone.properties 后的其他参数//比如connect-file-source.properties、connect-file-sink.propertiesString[] extraArgs = Arrays.copyOfRange(args, 1, args.length);//启动ConnectConnect connect = startConnect(workerProps, extraArgs);// 关机将由Ctrl-C或通过HTTP关机请求触发connect.awaitStop();} catch (Throwable t) {log.error("Stopping due to error", t);Exit.exit(2);}}}

总结下来做了两件事情

1、初始化connect-standalone.properties配置信息

2、启动Connect

那什么是Connect,且它有做了什么呢?下面我们来看下

1、启动Connect

public abstract class AbstractConnectCli<T extends WorkerConfig> {public Connect startConnect(Map<String, String> workerProps, String... extraArgs) {//Kafka Connect工作进程初始化log.info("Kafka Connect worker initializing ...");long initStart = time.hiResClockMs();WorkerInfo initInfo = new WorkerInfo();initInfo.logAll();//正在扫描插件类。这可能需要一点时间log.info("Scanning for plugin classes. This might take a moment ...");Plugins plugins = new Plugins(workerProps);plugins.compareAndSwapWithDelegatingLoader();T config = createConfig(workerProps);log.debug("Kafka cluster ID: {}", config.kafkaClusterId());RestClient restClient = new RestClient(config);ConnectRestServer restServer = new ConnectRestServer(config.rebalanceTimeout(), restClient, config.originals());restServer.initializeServer();URI advertisedUrl = restServer.advertisedUrl();String workerId = advertisedUrl.getHost() + ":" + advertisedUrl.getPort();//connector.client.config.override.policy   默认值 All//ConnectorClientConfigOverridePolicy 实现的类名或别名。// 定义连接器可以覆盖哪些客户端配置。默认实现为“All”,这意味着连接器配置可以覆盖所有客户端属性。// 框架中的其他可能策略包括“无”禁止连接器覆盖客户端属性,“主体”允许连接器仅覆盖客户端主体ConnectorClientConfigOverridePolicy connectorClientConfigOverridePolicy = plugins.newPlugin(config.getString(WorkerConfig.CONNECTOR_CLIENT_POLICY_CLASS_CONFIG),config, ConnectorClientConfigOverridePolicy.class);Herder herder = createHerder(config, workerId, plugins, connectorClientConfigOverridePolicy, restServer, restClient);final Connect connect = new Connect(herder, restServer);//Kafka Connect工作进程初始化已完成log.info("Kafka Connect worker initialization took {}ms", time.hiResClockMs() - initStart);try {connect.start();} catch (Exception e) {log.error("Failed to start Connect", e);connect.stop();Exit.exit(3);}//这里面会依次处理 connect-file-source.properties、connect-file-sink.properties 等参数processExtraArgs(herder, connect, extraArgs);return connect;}}

可以理解connect-standalone.properties是用于启动connect的,connect-file-source.properties是用于启动source任务的的,connect-file-sink.properties是用于启动sink任务的,source、sink的任务是在processExtraArgs(herder, connect, extraArgs)中完成的,这里用到了三个参数,

1、Herder:牧民,可用于在Connect群集上执行操作的实例,它里面有Worker

2、Connect:这个类将Kafka Connect进程的所有组件(牧民、工人、存储、命令接口)联系在一起,管理它们的生命周期

3、extraArgs:用于配置source、sink任务的参数

2、启动source、sink任务

这里我们对着参数(connect-file-source.properties、connect-file-sink.properties)来看更为形象

    protected void processExtraArgs(Herder herder, Connect connect, String[] extraArgs) {try {//一个配置一个配置去解析//按照官方的例子会依次解析connect-file-source.properties、connect-file-sink.propertiesfor (final String connectorConfigFile : extraArgs) {CreateConnectorRequest createConnectorRequest = parseConnectorConfigurationFile(connectorConfigFile);FutureCallback<Herder.Created<ConnectorInfo>> cb = new FutureCallback<>((error, info) -> {if (error != null)log.error("Failed to create connector for {}", connectorConfigFile);elselog.info("Created connector {}", info.result().name());});//依次把每个配置文件的解析结果放入 herder 牧民中herder.putConnectorConfig(createConnectorRequest.name(), createConnectorRequest.config(),createConnectorRequest.initialTargetState(),false, cb);//Future的get方法‌是一个阻塞方法,用于获取任务的运行结果。当调用get方法时,如果任务尚未完成,线程会阻塞,直到任务完成。cb.get();}} catch (Throwable t) {//.....}}

下面我们分别用connect-file-source.properties、connect-file-sink.properties带入看看牧民(herder)是如何将任务进行执行的。一份文件就是一个connector,这里我们先分析StandaloneHerder

public class StandaloneHerder extends AbstractHerder {private final ScheduledExecutorService requestExecutorService;StandaloneHerder(Worker worker,String workerId,String kafkaClusterId,StatusBackingStore statusBackingStore,MemoryConfigBackingStore configBackingStore,ConnectorClientConfigOverridePolicy connectorClientConfigOverridePolicy,Time time) {super(worker, workerId, kafkaClusterId, statusBackingStore, configBackingStore, connectorClientConfigOverridePolicy, time);this.configState = ClusterConfigState.EMPTY;//创建一个单线程执行器,可以安排命令在给定延迟后运行,或定期执行。this.requestExecutorService = Executors.newSingleThreadScheduledExecutor();configBackingStore.setUpdateListener(new ConfigUpdateListener());}public void putConnectorConfig(final String connName, final Map<String, String> config, final TargetState targetState,final boolean allowReplace, final Callback<Created<ConnectorInfo>> callback) {try {validateConnectorConfig(config, (error, configInfos) -> {if (error != null) {callback.onCompletion(error, null);return;}//向执行器提交 source 或 sink 的 ConnectorConfigrequestExecutorService.submit(() -> putConnectorConfig(connName, config, targetState, allowReplace, callback, configInfos));});} catch (Throwable t) {callback.onCompletion(t, null);}}private synchronized void putConnectorConfig(String connName,final Map<String, String> config,TargetState targetState,boolean allowReplace,final Callback<Created<ConnectorInfo>> callback,ConfigInfos configInfos) {try {//........//将此连接器配置(以及可选的目标状态)写入持久存储,并等待其被确认,//然后通过在Kafka日志中添加消费者来读回。如果将worker配置为使用fencable生产者写入配置topic,//则必须在调用此方法之前成功调用claimWritePrivileges()configBackingStore.putConnectorConfig(connName, config, targetState);startConnector(connName, (error, result) -> {if (error != null) {callback.onCompletion(error, null);return;}//执行器提交任务requestExecutorService.submit(() -> {updateConnectorTasks(connName);callback.onCompletion(null, new Created<>(created, createConnectorInfo(connName)));});});} catch (Throwable t) {callback.onCompletion(t, null);}}private synchronized void updateConnectorTasks(String connName) {//......//配置 connectorTask 这里会用到配置文件中的connector.class//既:List<Map<String, String>> newTaskConfigs = recomputeTaskConfigs(connName);List<Map<String, String>> rawTaskConfigs = reverseTransform(connName, configState, newTaskConfigs);if (taskConfigsChanged(configState, connName, rawTaskConfigs)) {removeConnectorTasks(connName);configBackingStore.putTaskConfigs(connName, rawTaskConfigs);createConnectorTasks(connName);}}private void createConnectorTasks(String connName) {List<ConnectorTaskId> taskIds = configState.tasks(connName);createConnectorTasks(connName, taskIds);}private void createConnectorTasks(String connName, Collection<ConnectorTaskId> taskIds) {Map<String, String> connConfigs = configState.connectorConfig(connName);for (ConnectorTaskId taskId : taskIds) {//依次启动每个task(配置的 source和sink task)startTask(taskId, connConfigs);}}private boolean startTask(ConnectorTaskId taskId, Map<String, String> connProps) {switch (connectorType(connProps)) {case SINK:return worker.startSinkTask(taskId,configState,connProps,configState.taskConfig(taskId),this,configState.targetState(taskId.connector()));case SOURCE:return worker.startSourceTask(taskId,configState,connProps,configState.taskConfig(taskId),this,configState.targetState(taskId.connector()));default:throw new ConnectException("Failed to start task " + taskId + " since it is not a recognizable type (source or sink)");}}}

牧民(Herder)会用Worker来启动配置的SouceTask和SinkTask,最终他们调用的还是同一个方法,只是任务构建器不同而已,下面我们继续分析

Worker启动SouceTask

    public boolean startSourceTask(...) {return startTask(id, connProps, taskProps, configState, statusListener,new SourceTaskBuilder(id, configState, statusListener, initialState));}

Worker启动SinkTask

    public boolean startSinkTask(...) {return startTask(id, connProps, taskProps, configState, statusListener,new SinkTaskBuilder(id, configState, statusListener, initialState));}

下面我们共同来分析startTask(...)

    //线程池//Executors.newCachedThreadPool()private final ExecutorService executor;private boolean startTask(...){//......//从 connector.class 获取类进行加载String connType = connProps.get(ConnectorConfig.CONNECTOR_CLASS_CONFIG);ClassLoader connectorLoader = plugins.connectorLoader(connType);//......final Class<? extends Task> taskClass = taskConfig.getClass(TaskConfig.TASK_CLASS_CONFIG).asSubclass(Task.class);//对应的sourceTask 和 sinkTaskfinal Task task = plugins.newTask(taskClass);//此处就是根据传的参数来workerTask 会加载不同的Task// SourceTaskBuilder --->  SouceTask// SinkTaskBuilder   --->  SinkTaskworkerTask = taskBuilder.withTask(task).withConnectorConfig(connConfig).withKeyConverter(keyConverter).withValueConverter(valueConverter).withHeaderConverter(headerConverter).withClassloader(connectorLoader).build();workerTask.initialize(taskConfig);WorkerTask<?, ?> existing = tasks.putIfAbsent(id, workerTask);//我们继续往下分析,看看 SourceTask  和 SinkTask 都是怎么执行的executor.submit(plugins.withClassLoader(connectorLoader, workerTask));if (workerTask instanceof WorkerSourceTask) {SourceTask 有一个单独 定时提交 offset 的 任务,默认间隔为 1minsourceTaskOffsetCommitter.ifPresent(committer -> committer.schedule(id, (WorkerSourceTask) workerTask));}return true;}

FileStreamSource对应的Task为:FileStreamSourceTask

FileStreamSink对应的Task为:FileStreamSinkTask

Worker会将WorkerTask调起去生产和消费数据

3、调度运行WorkerTask

WorkerTask会提供Worker用于管理任务的基本方法。实现将用户指定的Task与Kafka相结合,以创建数据流。且WorkerTask会放到线程池中进行调度,下面我们看下它的run()

//以下只是主要代码
abstract class WorkerTask<T, R extends ConnectRecord<R>> implements Runnable {public void run() {doRun();}private void doRun() throws InterruptedException {//会初始化 我们在connect-file-source.properties、connect-file-sink.properties中对Producer、Consumer的参数配置doStart();//真的开始//    用对应的SourceTask去读取数据,并交由Producer去生产//    用Consumer接收数据交由 SinkTask去处理数据execute();}}

doStart()

    void doStart() {retryWithToleranceOperator.reporters(errorReportersSupplier.get());initializeAndStart();statusListener.onStartup(id);}

Source 和 Sink 会对initializeAndStart()有不同的实现

Source

这里用的是WorkerTask的子类:AbstractWorkerSourceTask

public abstract class AbstractWorkerSourceTask extends WorkerTask<SourceRecord, SourceRecord> {protected void initializeAndStart() {prepareToInitializeTask();offsetStore.start();//启动标记设置为 truestarted = true;//使用指定的上下文对象初始化此SourceTask。task.initialize(sourceTaskContext);//启动任务。这应该处理任何配置解析和任务的一次性设置。//这里会实际调用 FileStreamSourceTask 或者我们指定的其他 SourceTask的 start()task.start(taskConfig);log.info("{} Source task finished initialization and start", this);}}
public class FileStreamSourceTask extends SourceTask {public void start(Map<String, String> props) {AbstractConfig config = new AbstractConfig(FileStreamSourceConnector.CONFIG_DEF, props);//name=local-file-source//connector.class=FileStreamSource//tasks.max=1//file=/opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/etc/kafka/conf.dist/connect-file-test-data/source.txt//topic=connect-test// filefilename = config.getString(FileStreamSourceConnector.FILE_CONFIG);if (filename == null || filename.isEmpty()) {stream = System.in;//跟踪stdin的偏移量没有意义streamOffset = null;reader = new BufferedReader(new InputStreamReader(stream, StandardCharsets.UTF_8));}//topic=connect-testtopic = config.getString(FileStreamSourceConnector.TOPIC_CONFIG);//batch.sizebatchSize = config.getInt(FileStreamSourceConnector.TASK_BATCH_SIZE_CONFIG);}}
Sink

这里用的是WorkerTask的子类:WorkerSinkTask

    protected void initializeAndStart() {SinkConnectorConfig.validate(taskConfig);//订阅 topicif (SinkConnectorConfig.hasTopicsConfig(taskConfig)) {List<String> topics = SinkConnectorConfig.parseTopicsList(taskConfig);consumer.subscribe(topics, new HandleRebalance());log.debug("{} Initializing and starting task for topics {}", this, String.join(", ", topics));} else {//topics.regex//根据正则设置的 要消费的 topicString topicsRegexStr = taskConfig.get(SinkTask.TOPICS_REGEX_CONFIG);Pattern pattern = Pattern.compile(topicsRegexStr);consumer.subscribe(pattern, new HandleRebalance());log.debug("{} Initializing and starting task for topics regex {}", this, topicsRegexStr);}//初始化此任务的上下文。task.initialize(context);//启动任务。这应该处理任何配置解析和任务的一次性设置。//这里会真正的调用 FileStreamSinkTask 或者 其他我们配置的SinkTask 的 start()task.start(taskConfig);log.info("{} Sink task finished initialization and start", this);}
public class FileStreamSinkTask extends SinkTask {public void start(Map<String, String> props) {AbstractConfig config = new AbstractConfig(FileStreamSinkConnector.CONFIG_DEF, props);filename = config.getString(FileStreamSinkConnector.FILE_CONFIG);if (filename == null || filename.isEmpty()) {outputStream = System.out;} else {try {//根据我们在配置文件中结果文件 创建输出流outputStream = new PrintStream(Files.newOutputStream(Paths.get(filename), StandardOpenOption.CREATE, StandardOpenOption.APPEND),false,StandardCharsets.UTF_8.name());} catch (IOException e) {throw new ConnectException("Couldn't find or create file '" + filename + "' for FileStreamSinkTask", e);}}}}

execute()

为了看的清晰,这里我们只列举主要代码

Source
public abstract class AbstractWorkerSourceTask extends WorkerTask<SourceRecord, SourceRecord> {public void execute() {while (!isStopping()) {//这里会调用 task.poll(); 也就是从文件读取数据toSend = poll();//这里真的就会调用producer.send() 发送数据sendRecords()}}
}
Sink
class WorkerSinkTask extends WorkerTask<ConsumerRecord<byte[], byte[]>, SinkRecord> {public void execute() {while (!isStopping())iteration();}}protected void iteration() {poll(timeoutMs);}protected void poll(long timeoutMs) {//用consumer拉回数据    ConsumerRecords<byte[], byte[]> msgs = pollConsumer(timeoutMs);//转化并交由 自己定义的 SinkTask 处理数据convertMessages(msgs);deliverMessages()}private ConsumerRecords<byte[], byte[]> pollConsumer(long timeoutMs) {ConsumerRecords<byte[], byte[]> msgs = consumer.poll(Duration.ofMillis(timeoutMs));}
}

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com