您的位置:首页 > 财经 > 金融 > 成都优化外包_推广公司怎么接活_竞价培训班_石家庄网站建设就找

成都优化外包_推广公司怎么接活_竞价培训班_石家庄网站建设就找

2024/12/23 10:10:50 来源:https://blog.csdn.net/2301_77549977/article/details/143664784  浏览:    关键词:成都优化外包_推广公司怎么接活_竞价培训班_石家庄网站建设就找
成都优化外包_推广公司怎么接活_竞价培训班_石家庄网站建设就找

在 Python 中,负数索引用于从序列(如列表、元组或张量)的末尾开始计数。负数索引的理解方式如下:

  • -1 表示序列的最后一个元素。
  • -2 表示序列的倒数第二个元素。
  • 以此类推。

例子:

假设我们有一个列表 list

lst = [10, 20, 30, 40, 50]

使用负数索引可以访问列表中的元素:

  • lst[-1] 返回 50,即列表的最后一个元素。
  • lst[-2] 返回 40,即列表的倒数第二个元素。
  • lst[-3] 返回 30,即列表的倒数第三个元素。

在 Layer Normalization 的实现中,负数索引用于计算需要进行归一化的维度索引。

假设 self.normalized_shape 是 [3, 4],则 len(self.normalized_shape) 是 2

因此,range(len(self.normalized_shape)) 生成 [0, 1]

对于每个 i,计算 -(i+1)

  • 当 i = 0 时,-(i+1) = -1,表示最后一个维度。
  • 当 i = 1 时,-(i+1) = -2,表示倒数第二个维度。

因此,dims 的值为 [-1, -2],表示需要在最后两个维度上进行归一化。

结合实例讲解

假设我们有一个输入张量 x,其形状为 [2, 3, 4],即批量大小为 2,通道数为 3,每个通道有 4 个元素。我们希望在通道和空间维度上进行归一化。

import torchx = torch.randn(2, 3, 4)  # 输入张量的形状为 [2, 3, 4]
normalized_shape = [3, 4]# 计算需要进行 LN 的维度索引 dims
dims = [-(i+1) for i in range(len(normalized_shape))]
print(dims)  # 输出 [-1, -2]# 计算特征图对应维度的均值和方差
mean = x.mean(dim=dims, keepdims=True)
mean_x2 = (x**2).mean(dim=dims, keepdims=True)
var = mean_x2 - mean**2# 对输入 x 进行归一化
x_norm = (x - mean) / torch.sqrt(var + 1e-5)
print(x_norm)

这个例子中:

  • dims 的值为 [-1, -2],表示需要在最后两个维度上进行归一化。
  • mean 和 var 分别是特征图对应维度的均值和方差。
  • x_norm 是归一化后的张量。

通过使用负数索引,我们可以方便地指定需要进行归一化的维度,而不需要显式地计算维度的索引。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com