您的位置:首页 > 财经 > 金融 > 策划公司怎么找客户_什么叫营销模式_南通关键词优化平台_网络媒体

策划公司怎么找客户_什么叫营销模式_南通关键词优化平台_网络媒体

2024/12/26 14:02:35 来源:https://blog.csdn.net/qgf1099062139/article/details/143433524  浏览:    关键词:策划公司怎么找客户_什么叫营销模式_南通关键词优化平台_网络媒体
策划公司怎么找客户_什么叫营销模式_南通关键词优化平台_网络媒体

Python WordCloud库与jieba分词生成词云图的完整指南

关键技术点及代码示例

1. 安装必要的库

使用pip安装wordcloudjieba库:

pip install wordcloud
pip install jieba

2. jieba分词

精确模式
import jiebatext = "Python是广泛使用的编程语言。它被用于网站开发、数据分析、人工智能等多个领域。"
seg_list = jieba.cut(text, cut_all=False)  # 精确模式
print("精确模式: " + "/ ".join(seg_list))
搜索引擎模式
seg_list = jieba.cut_for_search(text)  # 搜索引擎模式
print("搜索引擎模式: " + "/ ".join(seg_list))

3. 去除停用词

创建一个停用词列表,并从分词结果中去除停用词:

with open('stopwords.txt', 'r', encoding='utf-8') as f:stopwords = [line.strip() for line in f.readlines()]words = [word for word in seg_list if word not in stopwords and len(word) > 1]

4. 统计词频

使用collections.Counter类统计词频:

from collections import Countercounter = Counter(words)
for word, count in counter.most_common(10):print(word, count)

5. 生成词云图

创建WordCloud对象并生成词云图:

from wordcloud import WordCloud
import matplotlib.pyplot as pltwordcloud = WordCloud(font_path='path_to_your_chinese_font.ttf',  # 指定中文字体路径background_color='white').generate_from_frequencies(dict(counter))plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

6. 保存词云图

将生成的词云图保存为图片文件:

wordcloud.to_file('wordcloud.png')

完整代码

结合以上关键技术点,以下是生成词云图的完整代码:

import jieba
from collections import Counter
from wordcloud import WordCloud
import matplotlib.pyplot as plttext = "Python是广泛使用的编程语言。它被用于网站开发、数据分析、人工智能等多个领域。"# 使用jieba进行中文分词
seg_list = jieba.cut(text, cut_all=False)  # 精确模式# 要有这个文件stopwords.txt   去除停用词
with open('stopwords.txt', 'r', encoding='utf-8') as f:stopwords = [line.strip() for line in f.readlines()]
words = [word for word in seg_list if word not in stopwords and len(word) > 1]# 统计词频
counter = Counter(words)
# 打印词频最高的10个词
for word, count in counter.most_common(10):print(word, count)# 生成词云图
wordcloud = WordCloud(font_path='C:/Windows/Fonts/simhei.ttf',  # 指定中文字体路径background_color='white').generate_from_frequencies(dict(counter))# 显示词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()# 保存词云图
wordcloud.to_file('wordcloud.png')

注意事项

  • 确保stopwords.txt文件中包含了你想要去除的停用词,每行一个词。
  • font_path参数需要指向一个有效的中文字体文件路径,否则中文字符将无法正确显示。
  • path_to_your_chinese_font.ttf需要替换为你实际的中文字体文件路径。
  • stopwords.txtwordcloud.png是示例文件名,你可以根据需要修改它们。

通过上述代码,你可以实现从中文文本的分词到词云图的生成和保存的完整流程。这是一个非常实用的文本数据可视化工具,可以帮助你快速理解文本数据中的关键信息。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com